Module ARgorithmToolkit.array
The array module provides support for one dimensional arrays as well as multinational arrays. The main class in this module is the Array class. The other classes act as support class to Array class. For this reason the Array class can directly be imported from the ARgorithmToolkit library without having to import from the array module Both work:
>>> arr = ARgorithmToolkit.Array(name='arr',algo=algo,data=test_data)
>>> arr = ARgorithmToolkit.array.Array(name='arr',algo=algo,data=test_data)
Expand source code
"""The array module provides support for one dimensional arrays as well as
multinational arrays. The main class in this module is the Array class. The
other classes act as support class to Array class. For this reason the Array
class can directly be imported from the ARgorithmToolkit library without having
to import from the array module Both work:
>>> arr = ARgorithmToolkit.Array(name='arr',algo=algo,data=test_data)
>>> arr = ARgorithmToolkit.array.Array(name='arr',algo=algo,data=test_data)
"""
import numpy as np
from ARgorithmToolkit.utils import State, StateSet, ARgorithmError, ARgorithmStructure
from ARgorithmToolkit.encoders import serialize
def check_dimensions(data):
"""This function is an internal function that helps verify the dimensions
of array from user input.
Args:
data : data is a multi-dimensional list or tuple
Raises:
ARgorithmError: if data is not of correct format , it raises an ARgorithmError
"""
if not isinstance(data,list) and not isinstance(data,tuple):
return 1
check = -1
try:
for x in data:
if check == -1:
check = check_dimensions(x)
else:
assert check == check_dimensions(x)
return len(data)
except Exception as ex:
raise ARgorithmError('please pass array of fixed dimensions') from ex
class ArrayState:
"""This class is used to generate states for various actions performed on
the ``ARgorithmToolkit.array.Array`` object.
Attributes:
name (str) : Name of the object for which the states are generated
_id (str) : id of the object for which the states are generated
"""
def __init__(self,name,_id):
self.name = name
self._id = _id
def array_declare(self,body,comments=""):
"""Generates the `array_declare` state when an instance of Array class
is created.
Args:
body: The contents of the array that are to be sent along with the state
comments (optional): The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "".
Returns:
ARgorithmToolkit.utils.State: returns the ``array_declare`` state for the respective array mentioned
"""
state_type = "array_declare"
state_def = {
"id": self._id,
"variable_name" : self.name,
"body" : body.tolist()
}
return State(
state_type=state_type,
state_def=state_def,
comments=comments
)
def array_iter(self,body,index,value=None,last_value=None,comments=""):
"""Generates the `array_iter` state when a particular index of array
has been accessed.
Args:
body: The contents of the array that are to be sent along with the state
index : The index of array that has been accessed
value (optional): The current value at array[index] if __setitem__(self, key, value) was called.
last_value (optional): The current value at array[index] if __setitem__(self, key, value) was called.
comments (optional): The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "".
Returns:
ARgorithmToolkit.utils.State: returns the ``array_iter`` state for the respective array mentioned
"""
state_type = "array_iter"
state_def = {
"id" : self._id,
"variable_name" : self.name,
"body" : body.tolist(),
"index" : index
}
if not (last_value is None):
state_def["value"] = value
state_def["last_value"] = last_value
return State(
state_type=state_type,
state_def=state_def,
comments=comments
)
def array_swap(self,body,indexes,comments=""):
"""Generates the ``array_swap`` state when values at two indexes of
array are being swapped.
Args:
body: The contents of the array that are to be sent along with the state
indexes : The indexes that are supposed to be swapped
comments (optional):The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "".
Returns:
ARgorithmToolkit.utils.State: returns the ``array_swap`` state for the respective array mentioned
"""
state_type = "array_swap"
state_def = {
"id" : self._id,
"variable_name" : self.name,
"body" : body.tolist(),
"index1" : indexes[0],
"index2" : indexes[1]
}
return State(
state_type=state_type,
state_def=state_def,
comments=comments
)
def array_compare(self,body,indexes,comments=""):
"""Generates the ``array_compare`` state when values at two indexes of
array are being compared.
Args:
body: The contents of the array that are to be sent along with the state
indexes : The indexes that are supposed to be compared
comments (optional):The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "".
Returns:
ARgorithmToolkit.utils.State: returns the ``array_compare`` state for the respective array mentioned
"""
state_type = "array_compare"
state_def = {
"id" : self._id,
"variable_name" : self.name,
"body" : body.tolist(),
"index1" : indexes[0],
"index2" : indexes[1]
}
return State(
state_type=state_type,
state_def=state_def,
comments=comments
)
class ArrayIterator:
"""This class is a generator that is returned each time an array has to be
iterated.
Yields:
element of Array
Raises:
AssertionError: If not declared with an instance of ARgorithmToolkit.array.Array
"""
def __init__(self,array):
assert isinstance(array,Array)
self.array = array
self._index = 0
self.size = len(array)
def __next__(self):
if self._index == self.size:
raise StopIteration
v = self.array[self._index]
self._index += 1
return v
@serialize
class Array(ARgorithmStructure):
"""The Array class used to emulate multidimensional arrays that can be
rendered in the ARgorithm Application as series of blocks.
Attributes:
name (str): name given to the rendered block in augmented reality. Essential. Should not be altered after initialisation
algo (ARgorithmToolkit.utils.StateSet): The stateset that will store the states generated by the instance of Array Class
data (list or tuple,optional): The value of array if user wants a predefined value. Defaults to None.
shape (tuple,optional): The shape of the array. Neccessary if data is not given. Gets overwritten if data is given.
fill (dtype,optional): Neccessary if shape is given. Fills the array with the fill character. Defaults to 0.
dtype (type,optional): Datatype of array element.
comments (str,optional): Description of instance of array and its applications that will be rendered during the ``array_declare`` state.
Raises:
ARgorithmError: raised if name is not given or Stateset if not provided
Examples:
This is an example of array being declared using predefined values.
>>> algo = ARgorithmToolkit.StateSet()
>>> test_data = [[1,2,3],[4,5,6]]
>>> arr = ARgorithmToolkit.Array(name='arr',algo=algo,data=test_data)
>>> arr
Array([[1, 2, 3],[4, 5, 6]])
This is an example of array being declared with shape and fill
>>> algo = ARgorithmToolkit.StateSet()
>>> arr = ARgorithmToolkit.Array(name='arr',algo=algo,shape=(2,3),fill=7)
>>> arr
Array([[7, 7, 7],[7, 7, 7]])
The array generated supports all the functionality of regular array
>>> len(arr)
2
>>> arr.shape()
(2,3)
>>> arr[1]
Array([7, 7, 7])
>>> arr[1][2]
7
>>> arr[1,2]
7
>>> for subarr in arr:
... for elem in subarr:
... print(elem)
7
7
7
7
7
7
"""
def __init__(self, name:str, algo:StateSet, data=None, shape=None, fill=0, dtype=int, comments=""):
try:
assert isinstance(name,str)
self.state_generator = ArrayState(name, str(id(self)))
except Exception as ex:
raise ARgorithmError('Give valid name to data structure') from ex
try:
assert isinstance(algo, StateSet)
self.algo = algo
except Exception as ex:
raise ARgorithmError("array structure needs a reference of template to store states") from ex
if data is not None:
check_dimensions(data)
self.body = np.array(data)
self.dtype = self.body.dtype
state = self.state_generator.array_declare(self.body,comments)
self.algo.add_state(state)
return
self.dtype = dtype
self.body = np.full(fill_value = fill, shape=shape, dtype=dtype)
state = self.state_generator.array_declare(self.body,comments)
self.algo.add_state(state)
def __len__(self):
"""returns length of array when processed by len() function.
Returns:
int: length of array or first dimension of array if it is multidimensional
Example:
>>> len(arr)
2
"""
return len(self.body)
def shape(self):
"""Get shape of array. As shown in above example.
Returns:
tuple: shape of array as a tuple
Example:
>>> arr.shape()
(2,3)
"""
return (self.body.shape) if isinstance(self.body.shape,tuple) else self.body.shape
def __getitem__(self, key, comments=""):
"""overloading the item access operator to generate states and create
more instances of ARgorithmToolkit Array if subarray is accessed.
Args:
key (index or slice):
comments (str, optional): Comments for descriptive purpose. Defaults to "".
Raises:
ARgorithmError: Raised if key is invalid
Returns:
element or subarray: depending on key , the returned object can be an element or an sub-array
Examples:
>>> arr[1,2]
6
"""
try:
if isinstance(key,slice):
name = f"{self.state_generator.name}_sub"
return Array(name=name , algo=self.algo , data=self.body[key] , comments=comments)
if isinstance(key,int) and len(self.body.shape)==1:
state = self.state_generator.array_iter(body=self.body, index=key, comments=comments)
self.algo.add_state(state)
return self.body[key]
if isinstance(key,int) or len(key) < len(self.shape()):
name = f"{self.state_generator.name}_sub"
state = self.state_generator.array_iter(body=self.body, index=key, comments=comments)
self.algo.add_state(state)
return Array(name=name, algo=self.algo, data=self.body[key], comments=comments)
state = self.state_generator.array_iter(body=self.body, index=key, comments=comments)
self.algo.add_state(state)
return self.body[key]
except Exception as ex:
raise ARgorithmError(f"invalid index error : {str(ex)}") from ex
def __setitem__(self, key, value):
"""Overload element write operation to trigger state.
Args:
key (index): index where element is written
value (dtype): value of element that is written
Example:
>>> arr
Array([[1, 2, 3],[4, 5, 6]])
>>> arr[1,2] = 0
>>> arr
Array([[1, 2, 3],[4, 5, 0]])
"""
last_value = self.body[key]
self.body[key] = value
state = self.state_generator.array_iter(body=self.body, index=key, value=value, last_value=last_value, comments=f'Writing {value} at index {key}')
self.algo.add_state(state)
def __iter__(self):
"""Generates a iterator object to iterate the array along its first
dimension.
Returns:
ArrayIterator: Iterator object
Example:
>>> [x for x in arr]
[[1,2,3],[4,5,6]]
"""
return ArrayIterator(self)
def compare(self,index1,index2,func=None,comments=""):
"""compares elements at 2 indexes of array.
Args:
index1 (index): The index of first element to be compared
index2 (index): The index of second element to be compared
func (function, optional): [description] The comparision function to be used , defaults to difference
comments (str, optional): Any comments to describe comparision
Returns:
Result of comparision operation
Example:
>>> arr.compare((0,0),(1,1))
-4
"""
item1 = self.body[index1]
item2 = self.body[index2]
state = self.state_generator.array_compare(self.body,(index1,index2),comments)
self.algo.add_state(state)
if func is None:
def default_comparator(item1, item2):
return item1-item2
func = default_comparator
return func(item1, item2)
def swap(self,index1,index2,comments=""):
"""swaps elements at 2 indexes of array.
Args:
index1 (index): The index of first element to be swapped
index2 (index): The index of second element to be swapped
comments (str, optional): Any comments to describe swap
Example:
>>> arr
Array([[1, 2, 3],[4, 5, 6]])
>>> arr.swap((0,2),(1,2))
>>> arr
Array([[1, 2, 6],[4, 5, 3]])
Note:
Do not try to swap subarrays in multidimensional arrays. It will lead to unexpected results
"""
self.body[index1], self.body[index2] = self.body[index2], self.body[index1]
state = self.state_generator.array_swap(self.body, (index1, index2) ,comments)
self.algo.add_state(state)
def tolist(self):
"""Returns array as multidimensional list.
Returns:
list: multidimensional python list containing value of array
Example:
>>> arr.tolist()
[[1,2,3],[4,5,6]]
Note:
The list generated is a normal python list so will not listen and store states. If you want to do that , store the list in the ARgorithmToolkit.vector.Vector object
"""
return self.body.tolist()
def __str__(self):
"""String conversion for Array.
Returns:
str: String describing Array
"""
return f"Array({self.tolist().__str__()})"
def __repr__(self):
"""Return representation for shell outputs.
Returns:
str: shell representation for array
"""
return f"Array({self.tolist().__repr__()})"
Functions
def check_dimensions(data)
-
This function is an internal function that helps verify the dimensions of array from user input.
Args
data : data is a multi-dimensional list or tuple
Raises
ARgorithmError
- if data is not of correct format , it raises an ARgorithmError
Expand source code
def check_dimensions(data): """This function is an internal function that helps verify the dimensions of array from user input. Args: data : data is a multi-dimensional list or tuple Raises: ARgorithmError: if data is not of correct format , it raises an ARgorithmError """ if not isinstance(data,list) and not isinstance(data,tuple): return 1 check = -1 try: for x in data: if check == -1: check = check_dimensions(x) else: assert check == check_dimensions(x) return len(data) except Exception as ex: raise ARgorithmError('please pass array of fixed dimensions') from ex
Classes
class Array (name: str, algo: StateSet, data=None, shape=None, fill=0, dtype=builtins.int, comments='')
-
The Array class used to emulate multidimensional arrays that can be rendered in the ARgorithm Application as series of blocks.
Attributes
name
:str
- name given to the rendered block in augmented reality. Essential. Should not be altered after initialisation
algo
:StateSet
- The stateset that will store the states generated by the instance of Array Class
data
:list
ortuple
,optional- The value of array if user wants a predefined value. Defaults to None.
shape
:tuple
,optional- The shape of the array. Neccessary if data is not given. Gets overwritten if data is given.
fill
:dtype
,optional- Neccessary if shape is given. Fills the array with the fill character. Defaults to 0.
dtype
:type
,optional- Datatype of array element.
comments
:str
,optional- Description of instance of array and its applications that will be rendered during the
array_declare
state.
Raises
ARgorithmError
- raised if name is not given or Stateset if not provided
Examples
This is an example of array being declared using predefined values.
>>> algo = ARgorithmToolkit.StateSet() >>> test_data = [[1,2,3],[4,5,6]] >>> arr = ARgorithmToolkit.Array(name='arr',algo=algo,data=test_data) >>> arr Array([[1, 2, 3],[4, 5, 6]])
This is an example of array being declared with shape and fill
>>> algo = ARgorithmToolkit.StateSet() >>> arr = ARgorithmToolkit.Array(name='arr',algo=algo,shape=(2,3),fill=7) >>> arr Array([[7, 7, 7],[7, 7, 7]])
The array generated supports all the functionality of regular array
>>> len(arr) 2 >>> arr.shape() (2,3) >>> arr[1] Array([7, 7, 7]) >>> arr[1][2] 7 >>> arr[1,2] 7 >>> for subarr in arr: ... for elem in subarr: ... print(elem) 7 7 7 7 7 7
Expand source code
class Array(ARgorithmStructure): """The Array class used to emulate multidimensional arrays that can be rendered in the ARgorithm Application as series of blocks. Attributes: name (str): name given to the rendered block in augmented reality. Essential. Should not be altered after initialisation algo (ARgorithmToolkit.utils.StateSet): The stateset that will store the states generated by the instance of Array Class data (list or tuple,optional): The value of array if user wants a predefined value. Defaults to None. shape (tuple,optional): The shape of the array. Neccessary if data is not given. Gets overwritten if data is given. fill (dtype,optional): Neccessary if shape is given. Fills the array with the fill character. Defaults to 0. dtype (type,optional): Datatype of array element. comments (str,optional): Description of instance of array and its applications that will be rendered during the ``array_declare`` state. Raises: ARgorithmError: raised if name is not given or Stateset if not provided Examples: This is an example of array being declared using predefined values. >>> algo = ARgorithmToolkit.StateSet() >>> test_data = [[1,2,3],[4,5,6]] >>> arr = ARgorithmToolkit.Array(name='arr',algo=algo,data=test_data) >>> arr Array([[1, 2, 3],[4, 5, 6]]) This is an example of array being declared with shape and fill >>> algo = ARgorithmToolkit.StateSet() >>> arr = ARgorithmToolkit.Array(name='arr',algo=algo,shape=(2,3),fill=7) >>> arr Array([[7, 7, 7],[7, 7, 7]]) The array generated supports all the functionality of regular array >>> len(arr) 2 >>> arr.shape() (2,3) >>> arr[1] Array([7, 7, 7]) >>> arr[1][2] 7 >>> arr[1,2] 7 >>> for subarr in arr: ... for elem in subarr: ... print(elem) 7 7 7 7 7 7 """ def __init__(self, name:str, algo:StateSet, data=None, shape=None, fill=0, dtype=int, comments=""): try: assert isinstance(name,str) self.state_generator = ArrayState(name, str(id(self))) except Exception as ex: raise ARgorithmError('Give valid name to data structure') from ex try: assert isinstance(algo, StateSet) self.algo = algo except Exception as ex: raise ARgorithmError("array structure needs a reference of template to store states") from ex if data is not None: check_dimensions(data) self.body = np.array(data) self.dtype = self.body.dtype state = self.state_generator.array_declare(self.body,comments) self.algo.add_state(state) return self.dtype = dtype self.body = np.full(fill_value = fill, shape=shape, dtype=dtype) state = self.state_generator.array_declare(self.body,comments) self.algo.add_state(state) def __len__(self): """returns length of array when processed by len() function. Returns: int: length of array or first dimension of array if it is multidimensional Example: >>> len(arr) 2 """ return len(self.body) def shape(self): """Get shape of array. As shown in above example. Returns: tuple: shape of array as a tuple Example: >>> arr.shape() (2,3) """ return (self.body.shape) if isinstance(self.body.shape,tuple) else self.body.shape def __getitem__(self, key, comments=""): """overloading the item access operator to generate states and create more instances of ARgorithmToolkit Array if subarray is accessed. Args: key (index or slice): comments (str, optional): Comments for descriptive purpose. Defaults to "". Raises: ARgorithmError: Raised if key is invalid Returns: element or subarray: depending on key , the returned object can be an element or an sub-array Examples: >>> arr[1,2] 6 """ try: if isinstance(key,slice): name = f"{self.state_generator.name}_sub" return Array(name=name , algo=self.algo , data=self.body[key] , comments=comments) if isinstance(key,int) and len(self.body.shape)==1: state = self.state_generator.array_iter(body=self.body, index=key, comments=comments) self.algo.add_state(state) return self.body[key] if isinstance(key,int) or len(key) < len(self.shape()): name = f"{self.state_generator.name}_sub" state = self.state_generator.array_iter(body=self.body, index=key, comments=comments) self.algo.add_state(state) return Array(name=name, algo=self.algo, data=self.body[key], comments=comments) state = self.state_generator.array_iter(body=self.body, index=key, comments=comments) self.algo.add_state(state) return self.body[key] except Exception as ex: raise ARgorithmError(f"invalid index error : {str(ex)}") from ex def __setitem__(self, key, value): """Overload element write operation to trigger state. Args: key (index): index where element is written value (dtype): value of element that is written Example: >>> arr Array([[1, 2, 3],[4, 5, 6]]) >>> arr[1,2] = 0 >>> arr Array([[1, 2, 3],[4, 5, 0]]) """ last_value = self.body[key] self.body[key] = value state = self.state_generator.array_iter(body=self.body, index=key, value=value, last_value=last_value, comments=f'Writing {value} at index {key}') self.algo.add_state(state) def __iter__(self): """Generates a iterator object to iterate the array along its first dimension. Returns: ArrayIterator: Iterator object Example: >>> [x for x in arr] [[1,2,3],[4,5,6]] """ return ArrayIterator(self) def compare(self,index1,index2,func=None,comments=""): """compares elements at 2 indexes of array. Args: index1 (index): The index of first element to be compared index2 (index): The index of second element to be compared func (function, optional): [description] The comparision function to be used , defaults to difference comments (str, optional): Any comments to describe comparision Returns: Result of comparision operation Example: >>> arr.compare((0,0),(1,1)) -4 """ item1 = self.body[index1] item2 = self.body[index2] state = self.state_generator.array_compare(self.body,(index1,index2),comments) self.algo.add_state(state) if func is None: def default_comparator(item1, item2): return item1-item2 func = default_comparator return func(item1, item2) def swap(self,index1,index2,comments=""): """swaps elements at 2 indexes of array. Args: index1 (index): The index of first element to be swapped index2 (index): The index of second element to be swapped comments (str, optional): Any comments to describe swap Example: >>> arr Array([[1, 2, 3],[4, 5, 6]]) >>> arr.swap((0,2),(1,2)) >>> arr Array([[1, 2, 6],[4, 5, 3]]) Note: Do not try to swap subarrays in multidimensional arrays. It will lead to unexpected results """ self.body[index1], self.body[index2] = self.body[index2], self.body[index1] state = self.state_generator.array_swap(self.body, (index1, index2) ,comments) self.algo.add_state(state) def tolist(self): """Returns array as multidimensional list. Returns: list: multidimensional python list containing value of array Example: >>> arr.tolist() [[1,2,3],[4,5,6]] Note: The list generated is a normal python list so will not listen and store states. If you want to do that , store the list in the ARgorithmToolkit.vector.Vector object """ return self.body.tolist() def __str__(self): """String conversion for Array. Returns: str: String describing Array """ return f"Array({self.tolist().__str__()})" def __repr__(self): """Return representation for shell outputs. Returns: str: shell representation for array """ return f"Array({self.tolist().__repr__()})"
Ancestors
Methods
def compare(self, index1, index2, func=None, comments='')
-
compares elements at 2 indexes of array.
Args
index1
:index
- The index of first element to be compared
index2
:index
- The index of second element to be compared
func
:function
, optional- [description] The comparision function to be used , defaults to difference
comments
:str
, optional- Any comments to describe comparision
Returns
Result of comparision operation
Example
>>> arr.compare((0,0),(1,1)) -4
Expand source code
def compare(self,index1,index2,func=None,comments=""): """compares elements at 2 indexes of array. Args: index1 (index): The index of first element to be compared index2 (index): The index of second element to be compared func (function, optional): [description] The comparision function to be used , defaults to difference comments (str, optional): Any comments to describe comparision Returns: Result of comparision operation Example: >>> arr.compare((0,0),(1,1)) -4 """ item1 = self.body[index1] item2 = self.body[index2] state = self.state_generator.array_compare(self.body,(index1,index2),comments) self.algo.add_state(state) if func is None: def default_comparator(item1, item2): return item1-item2 func = default_comparator return func(item1, item2)
def shape(self)
-
Get shape of array. As shown in above example.
Returns
tuple
- shape of array as a tuple
Example
>>> arr.shape() (2,3)
Expand source code
def shape(self): """Get shape of array. As shown in above example. Returns: tuple: shape of array as a tuple Example: >>> arr.shape() (2,3) """ return (self.body.shape) if isinstance(self.body.shape,tuple) else self.body.shape
def swap(self, index1, index2, comments='')
-
swaps elements at 2 indexes of array.
Args
index1
:index
- The index of first element to be swapped
index2
:index
- The index of second element to be swapped
comments
:str
, optional- Any comments to describe swap
Example
>>> arr Array([[1, 2, 3],[4, 5, 6]]) >>> arr.swap((0,2),(1,2)) >>> arr Array([[1, 2, 6],[4, 5, 3]])
Note
Do not try to swap subarrays in multidimensional arrays. It will lead to unexpected results
Expand source code
def swap(self,index1,index2,comments=""): """swaps elements at 2 indexes of array. Args: index1 (index): The index of first element to be swapped index2 (index): The index of second element to be swapped comments (str, optional): Any comments to describe swap Example: >>> arr Array([[1, 2, 3],[4, 5, 6]]) >>> arr.swap((0,2),(1,2)) >>> arr Array([[1, 2, 6],[4, 5, 3]]) Note: Do not try to swap subarrays in multidimensional arrays. It will lead to unexpected results """ self.body[index1], self.body[index2] = self.body[index2], self.body[index1] state = self.state_generator.array_swap(self.body, (index1, index2) ,comments) self.algo.add_state(state)
def to_json(self)
-
Creates a string representing a reference to ARgorithmObject for use in application.
Expand source code
def to_json(self): """Creates a string representing a reference to ARgorithmObject for use in application.""" class_name = type(self).__name__ obj_id = id(self) return f"$ARgorithmToolkit.{class_name}:{obj_id}"
def tolist(self)
-
Returns array as multidimensional list.
Returns
list
- multidimensional python list containing value of array
Example
>>> arr.tolist() [[1,2,3],[4,5,6]]
Note
The list generated is a normal python list so will not listen and store states. If you want to do that , store the list in the ARgorithmToolkit.vector.Vector object
Expand source code
def tolist(self): """Returns array as multidimensional list. Returns: list: multidimensional python list containing value of array Example: >>> arr.tolist() [[1,2,3],[4,5,6]] Note: The list generated is a normal python list so will not listen and store states. If you want to do that , store the list in the ARgorithmToolkit.vector.Vector object """ return self.body.tolist()
class ArrayIterator (array)
-
This class is a generator that is returned each time an array has to be iterated.
Yields
element of Array
Raises
AssertionError
- If not declared with an instance of ARgorithmToolkit.array.Array
Expand source code
class ArrayIterator: """This class is a generator that is returned each time an array has to be iterated. Yields: element of Array Raises: AssertionError: If not declared with an instance of ARgorithmToolkit.array.Array """ def __init__(self,array): assert isinstance(array,Array) self.array = array self._index = 0 self.size = len(array) def __next__(self): if self._index == self.size: raise StopIteration v = self.array[self._index] self._index += 1 return v
class ArrayState (name, _id)
-
This class is used to generate states for various actions performed on the
Array
object.Attributes
name (str) : Name of the object for which the states are generated _id (str) : id of the object for which the states are generated
Expand source code
class ArrayState: """This class is used to generate states for various actions performed on the ``ARgorithmToolkit.array.Array`` object. Attributes: name (str) : Name of the object for which the states are generated _id (str) : id of the object for which the states are generated """ def __init__(self,name,_id): self.name = name self._id = _id def array_declare(self,body,comments=""): """Generates the `array_declare` state when an instance of Array class is created. Args: body: The contents of the array that are to be sent along with the state comments (optional): The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "". Returns: ARgorithmToolkit.utils.State: returns the ``array_declare`` state for the respective array mentioned """ state_type = "array_declare" state_def = { "id": self._id, "variable_name" : self.name, "body" : body.tolist() } return State( state_type=state_type, state_def=state_def, comments=comments ) def array_iter(self,body,index,value=None,last_value=None,comments=""): """Generates the `array_iter` state when a particular index of array has been accessed. Args: body: The contents of the array that are to be sent along with the state index : The index of array that has been accessed value (optional): The current value at array[index] if __setitem__(self, key, value) was called. last_value (optional): The current value at array[index] if __setitem__(self, key, value) was called. comments (optional): The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "". Returns: ARgorithmToolkit.utils.State: returns the ``array_iter`` state for the respective array mentioned """ state_type = "array_iter" state_def = { "id" : self._id, "variable_name" : self.name, "body" : body.tolist(), "index" : index } if not (last_value is None): state_def["value"] = value state_def["last_value"] = last_value return State( state_type=state_type, state_def=state_def, comments=comments ) def array_swap(self,body,indexes,comments=""): """Generates the ``array_swap`` state when values at two indexes of array are being swapped. Args: body: The contents of the array that are to be sent along with the state indexes : The indexes that are supposed to be swapped comments (optional):The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "". Returns: ARgorithmToolkit.utils.State: returns the ``array_swap`` state for the respective array mentioned """ state_type = "array_swap" state_def = { "id" : self._id, "variable_name" : self.name, "body" : body.tolist(), "index1" : indexes[0], "index2" : indexes[1] } return State( state_type=state_type, state_def=state_def, comments=comments ) def array_compare(self,body,indexes,comments=""): """Generates the ``array_compare`` state when values at two indexes of array are being compared. Args: body: The contents of the array that are to be sent along with the state indexes : The indexes that are supposed to be compared comments (optional):The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "". Returns: ARgorithmToolkit.utils.State: returns the ``array_compare`` state for the respective array mentioned """ state_type = "array_compare" state_def = { "id" : self._id, "variable_name" : self.name, "body" : body.tolist(), "index1" : indexes[0], "index2" : indexes[1] } return State( state_type=state_type, state_def=state_def, comments=comments )
Methods
def array_compare(self, body, indexes, comments='')
-
Generates the
array_compare
state when values at two indexes of array are being compared.Args
body
- The contents of the array that are to be sent along with the state
indexes : The indexes that are supposed to be compared comments (optional):The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "".
Returns
State
- returns the
array_compare
state for the respective array mentioned
Expand source code
def array_compare(self,body,indexes,comments=""): """Generates the ``array_compare`` state when values at two indexes of array are being compared. Args: body: The contents of the array that are to be sent along with the state indexes : The indexes that are supposed to be compared comments (optional):The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "". Returns: ARgorithmToolkit.utils.State: returns the ``array_compare`` state for the respective array mentioned """ state_type = "array_compare" state_def = { "id" : self._id, "variable_name" : self.name, "body" : body.tolist(), "index1" : indexes[0], "index2" : indexes[1] } return State( state_type=state_type, state_def=state_def, comments=comments )
def array_declare(self, body, comments='')
-
Generates the
array_declare
state when an instance of Array class is created.Args
body
- The contents of the array that are to be sent along with the state
comments
:optional
- The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "".
Returns
State
- returns the
array_declare
state for the respective array mentioned
Expand source code
def array_declare(self,body,comments=""): """Generates the `array_declare` state when an instance of Array class is created. Args: body: The contents of the array that are to be sent along with the state comments (optional): The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "". Returns: ARgorithmToolkit.utils.State: returns the ``array_declare`` state for the respective array mentioned """ state_type = "array_declare" state_def = { "id": self._id, "variable_name" : self.name, "body" : body.tolist() } return State( state_type=state_type, state_def=state_def, comments=comments )
def array_iter(self, body, index, value=None, last_value=None, comments='')
-
Generates the
array_iter
state when a particular index of array has been accessed.Args
body
- The contents of the array that are to be sent along with the state
- index : The index of array that has been accessed
value
:optional
- The current value at array[index] if setitem(self, key, value) was called.
last_value
:optional
- The current value at array[index] if setitem(self, key, value) was called.
comments
:optional
- The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "".
Returns
State
- returns the
array_iter
state for the respective array mentioned
Expand source code
def array_iter(self,body,index,value=None,last_value=None,comments=""): """Generates the `array_iter` state when a particular index of array has been accessed. Args: body: The contents of the array that are to be sent along with the state index : The index of array that has been accessed value (optional): The current value at array[index] if __setitem__(self, key, value) was called. last_value (optional): The current value at array[index] if __setitem__(self, key, value) was called. comments (optional): The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "". Returns: ARgorithmToolkit.utils.State: returns the ``array_iter`` state for the respective array mentioned """ state_type = "array_iter" state_def = { "id" : self._id, "variable_name" : self.name, "body" : body.tolist(), "index" : index } if not (last_value is None): state_def["value"] = value state_def["last_value"] = last_value return State( state_type=state_type, state_def=state_def, comments=comments )
def array_swap(self, body, indexes, comments='')
-
Generates the
array_swap
state when values at two indexes of array are being swapped.Args
body
- The contents of the array that are to be sent along with the state
indexes : The indexes that are supposed to be swapped comments (optional):The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "".
Returns
State
- returns the
array_swap
state for the respective array mentioned
Expand source code
def array_swap(self,body,indexes,comments=""): """Generates the ``array_swap`` state when values at two indexes of array are being swapped. Args: body: The contents of the array that are to be sent along with the state indexes : The indexes that are supposed to be swapped comments (optional):The comments that are supposed to rendered with the state for descriptive purpose. Defaults to "". Returns: ARgorithmToolkit.utils.State: returns the ``array_swap`` state for the respective array mentioned """ state_type = "array_swap" state_def = { "id" : self._id, "variable_name" : self.name, "body" : body.tolist(), "index1" : indexes[0], "index2" : indexes[1] } return State( state_type=state_type, state_def=state_def, comments=comments )